Fine-Grained Counting with Crowd-Sourced Supervision
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o e T[rain with density maps based on clustered annotations.

e Add branch to fully convolutional counting network™ to predict in parallel:
(a) overall density, (b) soft multiclass segmentations. Element-wise multiply
outputs. Ensures consistent counts across attributes.
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How to generate ground truths?

e Mask segmentation and fine-grained counting loss in “unknown” regions.
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e Methods with localization would be useful for downstream tasks.

Blue/Green: Binary classifications for each attribute; Red: “Unknown”
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TLi et al. CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested
Scenes. CVPR 2018.



