The Caltech Fish Counting Dataset: A Benchmark for Multiple-Object Tracking and Counting

Justin Kay, Peter Kulits, Suzanne Stathatos, Siqi Deng, Erik Young, Sara Beery, Grant Van Horn, and Pietro Perona

Counting Salmon in Sonar Video

Important application in conservation ecology: **how many salmon migrate** upstream each year to spawn?

Sonar video cameras are deployed in rivers as a **non-invasive and accurate** way to monitor salmon migration.

Counting is currently performed manually by technicians who watch video. \rightarrow Automating counting is a **high-impact challenge** for computer vision.

The Caltech Fish Counting Dataset

A large-scale dataset for video object detection, multiple-object tracking, and video-based counting.

- 1,567 video sequences (16.7 hours of video)
- 527,000 image frames
- 516,000 bounding boxes
- 8,254 object instances
- Test data from four out-of-distribution locations \rightarrow study domain shift

Data Challenges

<u>Domain shift</u>

Each camera deployment presents different challenges to detection, tracking, and counting due to **location-specific environmental conditions**. Example frames and common challenges

High Freq.

Texture

Low Freq

Performance degrades at OOD locations

	Loc	$\begin{vmatrix} & \text{Baseline} \\ & \text{AP} \mid \text{MOTA} \mid \text{IDF1} \mid \text{HOTA} \mid \text{nMAE} \\ \\ & \text{@IoU=0.5} \end{vmatrix} $				
	$\begin{array}{c} \mathrm{KL} \\ Val \end{array}$	66.4	44.9	66.7	49.2	4.9%
<u>000</u>	KR KC NU EL	57.7 32.0 70.6 39.9	-28.5 -60.8 30.2 -376.7	$\begin{array}{c} 45.4 \\ 35.6 \\ 60.8 \\ 18.8 \end{array}$	$33.5 \\ 30.9 \\ 44.4 \\ 21.3$	11.8% 53.0% 14.0% 32.3%

Low signal-to-noise data

- Individuals look similar to background: Detection not always possible in a single frame (need to incorporate temporal information).
- Individuals look similar to each other: Visual features ineffective for target re-identification.
- Artifacts from sonar: speckle noise, acoustic shadows, deterioration of signal at long-range, "ghost fish" (echoes that reflect off water surface)

Comparison with other tracking datasets In Caltech Fish Counting, trackers cannot rely heavily upon visual association

(E) Sediment (F) Target Density

Evaluation

- Detection: AP@IoU=0.5
- Tracking: MOTA, IDF1, HOTA
- Counting: normalized MAE (nMAE)

Abs. count err. at location L nMAE = -Ground truth count at location L \rightarrow Target: < 10% nMAE

Baseline and Baseline++

- YOLOv5m + SORT (Kalman filter + IoU-based association)
- format w/ background subtraction and frame differencing

TAO / LaSOT

Ours

visipedia/caltech-fish-counting

Baseline Results

• "Baseline++" incorporates temporal information by augmenting input